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Abstract Protein internal motions influence observables

of NMR experiments. The effect of internal motions

occurring at the sub-nanosecond timescale can be described

by NMR order parameters. Here, we report that the use of

order parameters derived from Molecular Dynamics (MD)

simulations of two holo-structures of Protein Kinase A

increase the discrimination power of INPHARMA, an NMR

based methodology that selects docked ligand orientations

by maximizing the correlation of back-calculated to exper-

imental data. By including internal motion in the back-cal-

culation of the INPHARMA transfer, we obtain a more

realistic description of the system, which better represents

the experimental data. Furthermore, we propose a set of

generic order parameters, derived from MD simulations of

globular proteins, which can be used in the back-calculation

of INPHARMA NOEs for any protein–ligand complex, thus

by-passing the need of obtaining system-specific order

parameters for new protein–ligand complexes.

Keywords INPHARMA � Protein dynamics � Ligand

binding � Order parameters

Introduction

Protein surfaces are not static but plastic boundaries,

interacting with and adapting to ligands. Besides steric and

electrostatic interactions, dynamic features of proteins and

protein–ligand interactions have been shown to be func-

tionally relevant (Karplus and Kuriyan 2005; Kay et al.

1998). Protein dynamics can be probed experimentally and

computationally (Hub and de Groot 2009; Kohn et al.

2010), with NMR spectroscopy standing out as an espe-

cially well-suited experimental tool to study the dynamics

of complexes (Mittermaier and Kay 2006) in a close-

to-native liquid environment.

NMR spectroscopy is particularly powerful in the inves-

tigation of transient protein–ligand complexes (Carlomagno

2005). Ligand binding epitopes can be mapped using STD

techniques (Jayalakshmi and Krishna 2002; Mayer and

Meyer 2001), protein residues contacting the ligand can be

identified using chemical shift perturbation experiments

(McCoy and Wyss 2002), and transferred-NOEs or trans-

ferred-CCR (cross-correlated relaxation) rates allow for the

determination of the bioactive conformation of the ligand

(Blommers et al. 1999; Ni 1994; Carlomagno et al. 1999).

Recently, we have developed the INPHARMA method

(Orts et al. 2008; Sanchez-Pedregal et al. 2005) to deter-

mine the relative binding mode of two competitive, tran-

siently bound ligands. INPHARMA relies on interligand,

protein-mediated, transferred-NOE signals between two

ligands LA and LB, binding competitively and weakly to a

receptor T. The efficiency of the INPHARMA transfer at

each ligand site depends on the relative binding mode of
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the ligands to the protein; the transfer is generally more

efficient between two protons of the two ligands that are

close to the same protein protons in the binding pocket

(Supplementary Figure S1). Because of this dependency, a

quantitative analysis of the INPHARMA NOEs allows for

the determination of the relative binding mode of LA and

LB to the target protein. In favorable cases, the absolute

orientation of the ligands within the protein binding pocket

can be determined as well from INPHARMA data (Orts

et al. 2008). In agreement with standard structural based

drug-design workflows, the INPHARMA data are used to

select the correct binding modes from a pool of pairs of

complex structures generated by molecular docking. The

agreement between experimental and back-calculated

INPHARMA data for each complexes pair is used as

selection criterion (Reese et al. 2007).

For Protein Kinase A (PKA) and two competitive

ligands LA and LB, the INPHARMA NOEs allowed

selection of the correct ligand binding poses from a pool of

pairs of PKA/LA and PKA/LB structures representing

combinations of very different orientations of the ligands

(Orts et al. 2008, 2012). A high correlation coefficient

is found between experimental and back-calculated

INPHARMA NOEs for the complexes’ pair representing

the correct ligands binding poses, that is the crystal struc-

tures of the PKA/LA and PKA/LB complexes. In this

favorable case, the INPHARMA data allowed a clear

selection not only of the relative, but also of the absolute

binding mode of both LA and LB.

Despite the high correlation coefficient (R = 0.82) of

the experimental INPHARMA NOEs with the data back-

calculated for the correct structures of the PKA/LA and

PKA/LB complexes, the experimental data were consis-

tently lower than the theoretical ones (slope of the linear

fit = 0.33), indicating overestimation of the magnetization

transfer efficiency (Orts et al. 2008, 2009). To explain this

effect, we suggested the influence of protein internal

motion on the INPHARMA NOEs, as order parameters

smaller than 1 would reduce the efficiency of the magne-

tization transfer. Since the interligand NOEs observed in an

INPHARMA experiment are mediated by protein protons

through spin-diffusion, their value depends on protein

internal motions. This is in contrast to intraligand trans-

ferred-NOEs, which are dominated by the direct dipolar–

dipolar interaction between protons of the ligand and are

only mildly affected by the protein protons.

In this work, we set out to include NMR order parameters

in the INPHARMA calculations. To demonstrate the use-

fulness of order parameters in improving the quality of the fit

of experimental to theoretical data and in increasing the

selective power of the INPHARMA NOEs, we first estimate

a set of order parameters for the PKA/LA and PKA/LB

complexes from Molecular Dynamics simulations; next, we

modify the implementation of the full relaxation matrix

approach (Nilges et al. 1991), used to back-calculate the

INPHARMA data, to allow for incorporation of order

parameters in the spectral density function. Lastly, we

introduce a set of generic order parameters to be used in

INPHARMA calculations, thus by-passing the need of per-

forming MD simulations on each protein/ligand complex of

interest; we show that even the use of generic, non-tailored

order parameters increases the discrimination power of the

INPHARMA method.

Theory

Protein internal motions

Dipolar cross-relaxation rates rkl
NOE determine magnetiza-

tion transfer between spins k and l through space and

depend on the spectral density functions (Ernst et al. 1987):

JklðxÞ ¼
Z1

�1

CklðtÞ expð�ixtÞdt ð1Þ

which are the Fourier transforms of the dipolar correlation

functions:

CklðtÞ ¼ 4p
Y20 h1ab

kl ðt0 þ tÞ
� �

Y�20 h1ab
kl ðt0Þ

� �
r3

klðt0 þ tÞr3
klðt0Þ

* +
ð2Þ

with h1ab
kl being the angle between the inter-nuclear vector

rkl and the external magnetic field, Y2m being the rank 2

spherical harmonics of order m and the angled brackets

denoting a Boltzmann ensemble average. Assuming that

the overall tumbling motion of the molecule is much

slower than fast internal motion, the two kinds of motions

can be treated independently of each other (Wallach 1967):

for isotropic diffusional tumbling, the correlation function

of the overall motion is an exponential CtumblingðtÞ ¼
e�jtj=sc with sc being the correlation time of the molecule.

The contribution of the internal motions to the dipolar

correlation function has the form:

Cinternal
kl ðtÞ¼4p

5

X2

m¼�2

�
Y2m hmol

kl ðt0þ tÞ;/mol
kl ðt0þ tÞ

� �
Y�2m hmol

kl ðt0Þ;/
mol
kl ðt0Þ

� �
r3

klðt0þ tÞr3
klðt0Þ

* +

ð3Þ

with rkl
3 , hkl

mol, and /kl
mol being the spherical coordinates in a

molecular fixed frame.

For t ? ? the internal correlation function Cinternal(t)

assumes a plateau value S2, which is called the NMR order

parameter (Lipari and Szabo 1982).
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The dipolar spectral density functions can then be

rewritten as (Brueschweiler et al. 1992):

JklðxÞ ¼
1

r6
kl

� �
S2

kl

2sc

1þ x2s2
c

þ 1

r6
kl

� �
ð1� S2

klÞ
2stot

1þ x2s2
tot

ð4Þ

where

S2
kl ¼

4p
5

r�6
kl

� ��1
X2

m¼�2

Y2mðhmol
kl ;/

mol
kl Þ

r3
kl

� �����
����
2

ð5Þ

and

1

stot
¼ 1

sc
þ 1

skl
ð6Þ

and skl being the internal correlation time. The second term

of Eq. (4) can be neglected if skl � sc.

Assuming that the angular and the radial fluctuations are

uncorrelated, the order parameter of Eq. (5) can be fac-

torized as:

S2
kl � S2

r;kl � S2
X;kl ð7Þ

where

S2
r;kl ¼ r�3

kl

� �2
.

r�6
kl

� �
ð8Þ

and

S2
X;kl ¼

4p
5

X2

m¼�2

Y2mðhmol
kl ;/

mol
kl Þ

� ��� ��2 ð9Þ

are the radial and angular contributions, respectively. As

previously observed (Brueschweiler et al. 1992), for PKA

this was found to be true to a good approximation (data not

shown).

Results

INPHARMA calculations using order parameters

In previous work (Orts et al. 2008) conducted on PKA in

complex with two ligands LA and LB (Supplementary

Figure S2), we had reported a high correlation coefficient

for the linear fit between experimental INPHARMA NOEs

and INPHARMA NOEs calculated from crystal structure

distances in the complexes PKA/LA and PKA/LB (Pearson

correlation coefficient R = 0.82). In this work, internal

motions of both the protein and the ligands had been

neglected (Skl
2 = 1 for all pairs of protons (k, l)). Despite

the high correlation coefficient of the linear fit, the slope of

only 0.33 indicated the systematic overestimation of the

magnetization transfer (Orts et al. 2008) by a factor of *3.

In order to explain the deviation of the slope of the

linear fit from 1, we explored the impact of including

internal motions in the INPHARMA calculations. Protein

internal motions are expected to have an impact on the

values of interligand INPHARMA NOEs, as these NOEs

are mediated by the protons of the protein via spin diffu-

sion. Unlike transferred-NOEs, which have been shown to

depend mostly on direct interactions between protons of

the ligand, INPHARMA NOEs strictly depend on the

interaction of the ligand(s) with the protein protons.

In order to provide a general understanding of the influ-

ence of internal motions on INPHARMA NOEs, we simu-

lated the effect of uniform order parameters S2 \ 1 of

different size for both the protein and the ligands in both the

free and bound states (Fig. 1). The data were calculated for

the system consisting of the PKA/LA and PKA/LB com-

plexes, for which the correlation time is varied artificially

between 0 and 1,000 ns to simulate the effect of receptor

size. For a medium-sized protein (sc = 15–20 ns), the

intensities of the INPHARMA NOEs are very sensitive to

internal motion; on the other hand, for large receptors lower

order parameters are tolerated before observing a consider-

able effect on the slope of the fit. This is due to a compen-

satory effect in large receptors, where S2 \ 1 reduces the

efficiency of the INPHARMA transfer at the protein–ligand

interface (as it does for smaller receptors) but at the same

time reduces the loss of ligand magnetization in the protein

core due to spin-diffusion. In the absence of internal motions,

the loss of ligand magnetization due to spin-diffusion in the

protein core is more prominent for large receptors than for

small ones; consequently, larger receptors benefit more from

slowing down this process. Our results emphasize the

importance of considering internal motions for small and

medium-sized systems. At the same time, the discriminatory

power of the INPHARMA calculations proves remarkably

robust with respect to variations of the order parameters for

both small and large receptors, as correlation coefficients

stay high over a wide range of order parameter values,

especially when using full build-up information.

Next we asked the question about the dynamics of which

group of proton pairs has the strongest effect on the mag-

nitude of magnetization transfer. We systematically varied

the order parameters for the inter-molecular and intra-

molecular NOEs for a fixed receptor size (sc = 17 ns) and

monitored the intensity of the INPHARMA NOEs (data not

shown). As expected, the reduction of the order parameters

for the inter-molecular NOEs has the largest effect and

reduces the efficiency of the protein-mediated magnetiza-

tion transfer between the two ligands. This reduction can

be compensated by the presence of S2 \ 1 for the intra-

protein NOEs, which, as explained before, reduces the loss

of magnetization in the protein core. Intra-ligand order

parameters S2 \ 1 contribute the least.

The calculations of Fig. 1 and Supplementary Figure S3

predict that a uniform order parameter S2 \ 1 of about 0.5 is
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necessary to cause a three-fold reduction of the INPHARMA

NOEs for the PKA system. To verify whether a more real-

istic representation of the protein and ligand dynamics

would be able to explain the observed slope of 0.33 in the fit

between the experimental and the back-calculated IN-

PHARMA NOEs for the PKA/LA and PKA/LB complexes,

we obtained estimation of order parameters in the complexes

from trajectories of Molecular Dynamics (MD) simulations

(Brueschweiler et al. 1992). We performed 30 ns MD sim-

ulations of the PKA/LA and PKA/LB complexes and

extracted a set of order parameters for all proton pairs within

10 Å of the ligand binding pocket that have less than 6 Å

mutual inter-nuclear distance. Due to these cutoffs, proton

pairs that are not included in the calculations would either

have mutual distances beyond NOE detection, or be too

distant from the binding pocket for spin-diffusion mediated

magnetization transfer. To remove the overall tumbling

motion of the molecule, each frame was superimposed to the

crystal structure as common reference frame. The order

parameter was factorized in the radial and angular part

according to Eq. (7), which resulted to be a good approxi-

mation for our system (correlation coefficient R [ 0.996

between Skl
2 and product Sr,kl

2 � SX,kl
2 ). The order parameters

extracted from the MD simulations have an average of

0.62 ± 0.22, in good agreement with order parameters

derived from MD simulations in another study (Schneider

et al. 1999). Spectral density functions containing the first

term of Eq. (4) were used in the full relaxation matrix to

calculate the INPHARMA NOEs for the PKA/LA and PKA/

LB complexes with the correct ligands orientations.

To our disappointment, the incorporation of internal

motions in the INPHARMA calculations considerably

deteriorated the quality of the fit between experimental and

back-calculated data, yielding R = 0.66. However, the

slope increased to 0.71, suggesting that internal motions

can indeed explain the over-estimation of the INPHARMA

NOEs in back-calculation performed for rigid complexes.

The decrease in the value of the theoretical INPHARMA

NOEs of more than two-fold upon inclusion of internal

fluctuations indicates that the internal motions primarily

affecting the INPHARMA NOEs are of angular nature. A

strong effect of radial fluctuations would in fact increase

the rate of the NOE-transfer, according to r�3
kl

� �2� rh i�6;

and therefore result in a decrease of the slope of the cor-

relation between experimental and theoretical data.

The poor fit obtained with the order parameters and dis-

tance averaging from the MD runs indicates that Molecular

Dynamics is not able to reproduce the motional features of the

complexes at a high level of accuracy. This is in line with the

notion that obtaining accurate quantitative predictions of the

NMR relaxation parameters from MD simulations is a chal-

lenging task (Trbovic et al. 2008; Markwick et al. 2008; Case

2002), despite recent improvements in force-field parame-

terization (Showalter et al. 2007). In general, MD simulations

are able to reproduce order parameters for backbone NH and

methyl group CH bond vectors measured by NMR (Showalter

Fig. 1 Plots for the parameters of linear fits of INPHARMA NOEs

calculated for the PKA/LA and PKA/LB complexes with uniform

order parameters S2 \ 1 versus reference INPHARMA NOEs calcu-

lated for the rigid case with S2 = 1. Slopes (upper panel) and Pearson

correlation coefficients (lower panel) of best fit lines are shown in

dependence of complex size (x axis, sc = 1–1,000 ns) and order

parameter S2 (contour lines) for different mixing times (left to right)

and for the full build-up consisting of combined data from all four

mixing times. Contour lines at values [0.1;0.9] are shown color-coded
(red to green to blue). All combinations of INPHARMA NOEs

between the groups of protons of Fig. S2 have been calculated; data

are normalized to diagonal peak intensities in a NOESY spectrum at

150 ms mixing time
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and Brueschweiler 2007; Ming and Brueschweiler 2004),

which contain only the angular part of Eq. (7). Also in our

hands, quantitative estimation of backbone NH and methyl

group order parameters works reasonably well on a bench-

mark set of 4 globular proteins (see below). It is therefore

reasonable to assume that in this case the discrepancy

between the experimental and the back-calculated data can be

mainly attributed to the failure of MD simulations to repro-

duce the distance average r�3
kl

� �2
or r�6

kl

� �
: A similar con-

clusion is reported also in (Vogeli et al. 2009); in our case the

situation is aggravated by the intermolecular ligand–protein

distances, which are even more challenging to reproduce

theoretically due to the much worse definition of ligand force

fields with respect to protein force fields.

To verify the ability of the MD simulation to reproduce the

correct distance distribution, we compared the average dis-

tances rklh i from the MD simulations with the distances

extracted from the crystal structure, which can be considered

a good approximation of the average state in solution and the

most accurate distance information available. This compari-

son reveals that the correlation between rkl,cryst and rklh i is of

poor quality for interproton distances below 6 Å (R = 0.65),

with the MD-derived distances being consistently larger than

the statistic distances in the crystal structures. This is in

agreement with a recent study on perdeuterated ubiquitin

(Vogeli et al. 2009), which shows that inaccuracies in order

parameter estimations from MD simulations can be attributed

to distance effects and MD derived distances exhibit a poor

correlation to NMR distances derived from cross-relaxation

measurements. In our case, if only the intermolecular dis-

tances between the protein and the ligand are considered, the

quality of the correlation between rkl,cryst and rklh i drops even

further (R = 0.18 for the PKA/LA complex), which under-

lines the inability of MD simulations to correctly reproduce

the motions of the ligand in the binding pocket.

Inaccuracies in the MD simulations, especially in the

short distance range, which dominates the average, are

expected to have a large effect on r�6
kl

� �
; while the effect

on S2
r;kl ¼ r�3

kl

� �2
.

r�6
kl

� �
is expected to be less (for exam-

ple, 10 % error on the internuclear distances translates to

10 % error on the radial order parameter Sr,kl
2 , but 25 %

error on r�6
kl

� �
; as observed in numerical simulations).

Therefore, while the MD-derived averaged distances r�6
kl

� �
are substantially wrong, the MD-derived radial order

parameters S2
r;kl ¼ r�3

kl

� �2
.

r�6
kl

� �
are expected to be closer

to the correct ones. We therefore decided to use the Sr,kl
2

order parameters derived from MD simulations, while

turning to alternatives for the estimation of r�6
kl

� �
:

In the absence of an accurate estimation for r�6
kl

� �
in Eq

(4) from MD simulations, we attempted substituting r�6
kl

� �

with r�6
kl;cryst: This choice was made following previous

work, which reported on a good correspondence between

the effective distances extracted from NOE data and dis-

tances from crystal structures. In particular, (Vogeli et al.

2009) showed that for backbone NH interproton distances

up to 5 Å in perdeuterated ubiquitin, the crystal structure

distances are generally within 5 % of effective averaged

distances extracted from NOESY NMR experiments. This

result suggests that for most distances r�6
kl;cryst might be a

good surrogate of r�6
kl

� �
; as expected for internal motions

of moderate amplitude.

Using r�6
kl;cryst as a surrogate for r�6

kl

� �
we are able to

improve the correlation of the back-calculated INPHAR-

MA NOEs to the experimental data (R = 0.86 vs.

R = 0.82 in the static case) (Fig. 2); the slope of the linear

fit reaches 0.86, which indicates that internal motions on a

fast time-scale are responsible for most of the over-esti-

mation of the INPHARMA NOEs in back-calculations

using static complexes. Interestingly, setting a uniform

order parameter of 0.62 (equal to the average of all order

parameters extracted by the MD runs) would only result in

a slope of 0.6, indicating that our set of order parameters

captures specific characteristics of the interaction.

In any case, in a routine application of INPHARMA, r�6
kl

� �
would not be available from MD simulations for any protein

and ligand binding pose of interest, due to the expensiveness

of the calculation. A feasible approach could consist in back-

calculating the INPHARMA NOEs using static distances

from complex structural models in combination with generic

order parameters that can be applied to any protein. In view of

these limitations, the fact that the experimental data for the

PKA/LA and PKA/LB system can be best reproduced by using

the crystal structure static distances and the order parameters

extracted by MD simulations is encouraging. In the next

paragraph we explore the possibility of defining generic order

parameters that can be used for any protein/ligand complex in

the INPHARMA back-calculations.

At this point it should be noted that the usage of an

incorrect correlation time for the free ligands can also alter

the slope of the correlation between the back-calculated

and the experimental INPHARMA NOEs (Zheng and Post

1993). Therefore it is essential to optimize the parameters

of the system, such as the correlation time of the complex

and the correlation time of the free ligands, by fitting the

intraligand transferred-NOEs before calculating the IN-

PHARMA NOEs.

Generic order parameters

MD simulations are computationally costly and it is unfea-

sible to run them for every application of INPHARMA. In
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addition, current force fields are designed for proteins, while

simulations including ligands require manual adjustment

and extension of the force field. To by-pass the demanding

task of running MD simulations, it would be desirable to

obtain a set of order parameters that can be easily transferred

between systems.

To generate such generic order parameters, containing

both angular and radial contributions according to Eq. (5),

we follow the following approach: from MD simulations of

different globular proteins, we derive order parameters for

pairs of non-exchanging protons; we decompose our order

parameters into contributions of individual protons (vide

infra) and assign them to different chemical groups; last,

we propose to use group-wise averaged values as generic

order parameters that represent the motional behavior of

equivalent groups in any system of interest.

In general, order parameters Skl
2 are defined for pairs of

nuclei (k, l). To derive generic order parameters for each

proton type in a protein, the first required step is the

decomposition of Skl
2 in proton-specific contributions Sk

and Sl such that S2
kl � Sk � Sl: To find the optimal values Sk

for all protons k, we minimize the l2-norm (Euclidean

norm) of the difference A� xTx; with Akl = Skl
2 , to obtain

a vector x with xk = Sk. In other words, we decompose the

pair-wise order parameter Skl
2 into contributions from the

single protons k and l; by minimizing the target function

for all protons at the same time, all available dynamic

information about the protein is considered, i.e. for a given

nucleus k, Sk contains information about all Skl
2 for k = l.

Non-exchanging protons are classified according to the

heavy atom they are covalently bound to, yielding 9

groups: C-a, CH3, CH2-b, CH2-c, CH2-d, CH2-e, CH2-

proline, CH1, and aromatic protons. Each of the groups is

split in two sub-groups, depending on whether the proton k

belonging to that group is involved in a dipolar interaction

with a proton l belonging to the same or to another residue.

On average, we find that every proton has 18 neighbors

within the defined distance cutoff (5 Å), 6 of which belong

to the same residue, and the remaining 12 are in other

residues (11 in non-neighboring residues). The average

S-factor, calculated over the Sk for all protons inside one of

the eighteen defined chemical classes, represents the gen-

eric S-factor for that class.

To transfer this information and assign expected motional

behavior to an unknown system, we assign to each proton k

of the system an atom-type, according to the grouping

scheme described above, along with the corresponding

generic S-factor Sk. The generic order parameter Skl
2 defined

for the dipolar interaction between k and any other proton l is

obtained by multiplying the respective S-factors Sk and Sl.

We obtain the set of expected S-factors from 25 ns long

MD simulations of 4 globular proteins, for which a high-

resolution crystal structure is available in the Protein Data

Bank (Berman et al. 2000) (human ubiquitin, PDB identifier

1ubq (Vijay-Kumar et al. 1987); human FYN tyrosine kinase

SH3 domain, PDB identifier 1shf (Noble et al. 1993); the

murine adipocyte lipid binding protein, PDB identifier 1lib

(Xu et al. 1993); fibronectin type III domain from human

tenascin, PDB identifier 1ten (Leahy et al. 1992). For the

internal correlation function C(t)internal to be considered to

converge to S2, we require it to be constant within a range

around the plateau value for an extended time. An extensive

description of how order parameters are extracted is given in

the Methods section. The dynamics of each of these proteins

has been investigated experimentally by NMR spectroscopy

(Best et al. 2004; Constantine et al. 1998; Lee et al. 1999;

Mittermaier et al. 2003) and can thus be used to benchmark

our ability to estimate order parameters from MD simulations.

For human ubiquitin, experimental order parameters can be

reproduced well by our MD simulation (R = 0.87, root mean

square error, RMSE = 0.15 for methyl groups and R = 0.75,

RMSE = 0.07 for the backbone); for the human FYN

tyrosine kinase SH3 domain, methyl axis order parameters

are in excellent agreement with experiments (R = 0.76,

Fig. 2 Linear regression of experimental INPHARMA-NOEs

(I-NOEexp) at mixing times 300, 450, 600, and 750 ms versus

simulated data (I-NOEcalc) ignoring (left panel) and considering

(central and right panels) internal motions. In the central panel,
tailored order parameters, derived from MD-simulations for the PKA,

LA, LB system, are used; in the right panel generic order parameters

are used. INPHARMA cross-peak intensities are normalized to

diagonal peak intensities of LA in a NOESY spectrum at mixing time

of 150 ms. Best-fit lines (y = ax, black) are plotted after performing

a linear regression (left, R = 0.82, a = 0.33; centre, R = 0.86,

a = 0.86, right, R = 0.81, a = 0.73)
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RMSE = 0.13), while backbone order parameters are not

available; for both the murine adipocyte lipid binding protein

and the fibronectin type III domain from human tenascin,

methyl axis order parameters are well reproduced (R = 0.84,

RMSE = 0.14 and R = 0.71, RMSE = 0.21, respectively),

while the reproduction of backbone order parameters is

less accurate (R = 0.53, RMSE = 0.14 and R = 0.62,

RMSE = 0.05, respectively). For the murine adipocyte lipid

binding proteins, the lower quality of the fit of backbone order

parameters can be explained by the fact that the dynamics

studies were conducted on the human protein, while the

crystal structure of the human protein was not available at the

time when we performed the simulations. The human and

the murine proteins differ in 11 residues, which can explain

the differences in the dynamics. Similarly, for the fibronectin

type III domain from human tenascin, the dynamic studies

were performed on a 2 amino acids longer construct (aa

1–92), while the crystal structure is on a truncated construct

(aa 1–90). Hamill et al. report that the C-terminal extension

has a stabilizing effect on the protein and alters its dynamics.

Interestingly our studies can detect differences in the dynamic

behavior of different constructs (Hamill et al. 1998).

Encouraged by the apparent good quality of the MD

simulations in reproducing (angular) fluctuations, we used

the sets of theoretical order parameters from the MD

simulations of all four proteins to derive generalized order

parameters. After decomposition of the order parameters S2

to obtain S-factors, these S-factors are averaged for each

proton class for all four proteins (Table 1). To judge the

quality of the decomposition, we compute linear correla-

tion coefficients between Skl
2 and the product Sk � Sl for all

pairs of nuclei (k, l). For the four test systems, we obtain

average correlation coefficients R of 0.979 (intra-residue,

RMSE 0.045–0.055) and 0.935 (inter-residue, RMSE

0.076–0.085), respectively.

The values we obtain reflect the expected dynamic

behavior of a protein: C-a protons are largely static, while

methyl group rotation results in low S-factors for CH3

protons; for the different CH2 subgroups, an increasing

mobility (as reflected in decreasing S-factor) can be

appreciated when moving away from the main chain (from

b to e). It should be noted that the angular contribution to

the S-factor dominates the intra-residue values (that is, the

order parameter between closer protons), while the radial

contribution becomes more important for the inter-residue

values (that is the order parameter between protons at

longer distance) (data not shown).

Performance of generic order parameters

in INPHARMA calculations

Next, we used the set of generic order parameters in the

INPHARMA calculations for the PKA system. Protein

hydrogens of PKA were assigned to the chemical groups as

defined above; the ligand hydrogens were assigned to

equivalent groups, as if they belonged to the protein, i.e.

the ‘‘aromatic’’ or ‘‘CH2’’ group. This is an approximation;

however, the lack of reliable force fields for organic

ligands precludes a reliable calculation of ligand order

parameters from MD simulations, leaving no other choice

than using this approximation. S-factors of individual

protons were re-multiplied to retrieve generic order

parameters, and used in the INPHARMA calculations.

Similar to what observed with the set of PKA-specific

order parameters, generic order parameters result in an

increased slope of the best fit line of 0.73; the correlation

coefficient R of 0.81 is only slightly worse than that

obtained with PKA-specific order parameters and similar to

that obtained for the rigid case (Fig. 2). This result con-

firms the usefulness of the generic order parameter for the

INPHARMA back-calculations.

Validation of calculated order parameters

To further validate our set of order parameters, we investi-

gate its performance with respect to randomization (Fig. 3).

We create different sets of random order parameters and

evaluate how well these sets reproduce the experimental

data in the INPHARMA calculations in comparison to the

performance of the original set. Each test is iterated 1,000

times, each time using a different random set of order

parameters. We perform three tests: (1) we shuffle the ori-

ginal set, i.e. to each pair of nuclei, we randomly assign the

order parameter originally derived for another pair of nuclei;

(2) we assign random order parameters drawn from a

Gaussian distribution centered at 0.62 and with standard

deviation 0.22; (3) we assign random order parameters

drawn uniformly from [0;1]. Figure 3 shows that both the

shuffled and the Gaussian set of order parameters cluster in

Table 1 S-factors for ‘‘inter-’’ and ‘‘intra-residue’’ proton pairs

averaged over the four globular proteins (Table S1)

Inter-residue (SD) Intra-residue (SD) N (inter/intra)

C-a 0.96 (0.01) 0.93 (0.03) 372/297

CH3 0.62 (0.03) 0.56 (0.03) 611/587

CH2-b 0.87 (0.02) 0.81 (0.04) 366/307

CH2-c 0.78 (0.04) 0.73 (0.04) 154/160

CH2-d 0.69 (0.04) 0.60 (0.02) 52/67

CH2-e 0.44 (0.04) 0.39 (0.05) 35/48

CH2-proline 0.82 (0.03) 0.77 (0.04) 62/64

CH1 0.92 (0.03) 0.79 (0.06) 98/99

Aromatic 0.78 (0.02) 0.88 (0.03) 121/124

Both angular and radial fluctuations are contained in these values

N number of protons used to derive the corresponding S-factor;

SD standard deviation of each value
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the same region, while the uniform dataset samples a wider

range of quality space. Our sets of tailored and generic order

parameters, however, dominate most solutions according to

the Pareto criterion of multidimensional optimization. This

demonstrates that the set of order parameters extracted from

the MD simulation is appropriate to describe differential

dynamics in the protein.

Impact of order parameters on the discriminatory power

of INPHARMA

The generic order parameters can be used in INPHARMA

calculations of any complex of interest. A relevant question

is whether the representation of internal motions through the

generic order parameters can improve the selection of the

correct ligand binding modes, for example by providing an

improved clear-cut discrimination in the linear fit of the

experimental data to the correct or wrong binding poses.

To answer this question, we use the experimental data for

the complexes PKA/LA and PKA/LB to select among the 16

pairs of complexes analyzed in (Orts et al. 2008). These

complex pairs result from the combination of four different

binding modes of LA and four different binding modes of LB,

which all differ from each other by 1808 rotations around

three orthogonal axes. Figure 4a shows the correlation

coefficient and the slope of the linear fits of the experimental

data versus the back-calculated data for all 16 pairs with

(filled symbols) and without (empty symbols) including the

generic order parameters in the INPHARMA calculations. If

internal motions are ignored, four models show a correlation

coefficient higher than 0.8 and therefore pass the IN-

PHARMA selection. As explained in (Orts et al. 2008),

further discrimination between the binding poses is obtained

by additional criteria, such as the systematic deviation of

INPHARMA peaks stemming from different structural

moieties of the ligands and the semi-quantitative use of

further weak INPHARMA peaks. However, when using the

generic order parameters to describe the internal motions, a

much better discrimination of the binding modes is

achieved. Both the high correlation coefficient and the slope

point to the PKA/LA and PKA/LB complexes pair indicated

with a triangle as the one best reproducing the experimental

data; these complexes correspond to the correct binding pose

for both ligands, as seen in the crystal structures.

In alternative to evaluating the correlation coefficient

and the slope separately, a composite quality factor of the

type [m(1 - R)2 ? n(1 - a)2]-1 can be applied to select

the pairs of binding modes that is best in agreement with

the experimental data. Figure 4b shows this composite

quality factor for the sixteen combinations of PKA/LA and

PKA/LB models, both considering (y axis) and ignoring

(x axis) internal motions. The better discrimination

between poses achieved when including the description of

internal motions through the generic order parameters in

the INPHARMA back-calculations is striking (Fig. 4b). As

a note of caution, we point out that the impact of the

generic order parameters on INPHARMA calculations has

been tested for one experimental system only (PKA/LA and

PKA/LB complexes). A more extensive validation through

experimental data for other complex systems, including

proteins of different sizes, is in progress in our laboratory.

In general, we expect a larger impact of order parameters in

the discrimination potential of INPHARMA NOEs for

proteins of smaller size (Fig. 1).

Conclusions

In this work, we present an extension of the INPHARMA

method by incorporating protein plasticity in the calcula-

tions. By improving the realism of the underlying physical

model, i.e. by incorporating NMR order parameters rep-

resenting protein internal motions into the spectral density

function, we achieve an improvement of the correlation

coefficient between simulated and experimental data (0.86

as opposed to 0.82 for the rigid case) and of the slope of the

Fig. 3 Effect of randomization of the order parameters set. The

INPHARMA NOEs, which are back-calculated using different sets of

(randomized) order parameters are linearly fit to the experimental

data. The values of the slopes a of the respective best-fit line (y axis)

is plotted against the Pearson correlation coefficient R of the fit (x

axis). Each dot represents a set of order parameters. The color code is

as follows: red, the tailored order parameters extracted from MD

simulation; blue, the generic set of order parameters; green, the rigid
case; black, sets of order parameters randomized by shuffling proton

pairs and order parameters; dark gray, sets of order parameters drawn

from a Gaussian distribution with mean 0.62 and SD 0.22 to resemble

the order parameter dataset extracted from MD simulation; light gray,

a set of order parameters drawn uniformly from [0;1]
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linear regression line (0.86 as opposed to 0.33 for the rigid

case). This confirms that the systematic over-estimation of

magnetization transfer observed when treating the protein

as rigid is largely accounted for by the use of order

parameters. Importantly, we suggest generic order param-

eters that can be used for any experimental system irre-

spective of atomic coordinates. For the PKA system, we

find that the use of generic order parameters to represent

internal motions improves the efficacy of INPHARMA in

selecting between different ligands binding poses.

Materials and methods

MD simulations and force field parameterization

Proteins and protein–ligand complexes were simulated

using NAMD 2.6 (Phillips et al. 2005) and the CHARMM22

force field (MacKerell et al. 1998) in a periodic cubic box of

explicit TIP3 water with a side length of the maximum

internuclear distance of the respective protein atoms

(*45 Å for 1lib, *50 Å for 1shf, *47 Å for 1ten, and

*45 Å for 1ubq), plus a padding of 25 Å to avoid mutual

interaction of the protein images. Crystal structure coordi-

nates, with hydrogens added with REDUCE (Word et al.

1999), were used as starting points. After 104 steps of initial

energy minimization, systems were heated stepwise from 0

to 298 K with a temperature increment of 3 K per 1 ps,

followed by an equilibration phase of 5 ns and the produc-

tion runs. The time step of the integrator was set to 2.0 fs and

a Langevin thermostat was applied. Force field parameters

of ligands (equilibrium bond lengths, angles, dihedral

angles, and non-bonded interactions) were assigned

analogous to known compounds as described previously

(Vanommeslaeghe et al. 2010). Analogous substructures

were extracted from thiazole, thiophene, histidine, indole,

and aminopyridine moieties, and corresponding parameters

assigned to unknown ligand parameters. After MD simula-

tion, each frame of the trajectory was superimposed to the

crystal structure conformation, minimizing protein heavy

atom RMSD. Water coordinates were deleted and one

snapshot per 1 ps was subjected to further analysis.

Extraction of order parameters

Distance-dependent NMR order parameters (Lipari and

Szabo 1982) were calculated directly from the MD tra-

jectories utilizing VMD (Humphrey et al. 1996) according

to Eq 5 (Brueschweiler et al. 1992). Purely radial and

purely angular order parameters were calculated as in Eqs.

(8) and (9). (Brueschweiler et al. 1992).

Criterion for convergence of correlation functions

The existence of an order parameter Skl
2 requires the

internal correlation function Ckl(t) to converge to a plateau

value. After removing overall tumbling motion by super-

imposing each snapshot to the initial structure as a refer-

ence, normalized internal correlation functions were

computed directly from the MD trajectory as:

Fig. 4 Comparison of the selectivity of INPHARMA, when includ-

ing (solid symbols) or excluding (empty symbols) internal motions, for

the PKA/LA and PKA/LB complexes represented by a test set of four

binding poses per ligand (yielding 16 ligands combinations). The

correct pair of ligands binding poses, as seen in the crystal structures

of PKA/LA and PKA/LB (PDB IDs 3dne and 3dnd, respectively), is

indicated as triangle; other, incorrect, solutions as squares. a Slope of

best fit line a plotted against Pearson correlation coefficient R for

rigid and motional models. Equivalent solutions with R [ 0.70 for the

rigid model are connected by black lines. b Combined quality factor

of motional against rigid model; Pearson correlation coefficients R

and slopes of best fit line a are combined according to the formula

[m(1 - R)2 ? n(1 - a)2]-1 with m = n = 1, and resulting values

are normalized to the interval [0;1]
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CklðtiÞ ¼ c1

1

N � i

XN�i

j¼1

P2 hlab
kl ðtjÞ � hlab

kl ðtiþjÞ
� �
r3

klðtjÞ � r3
klðtiþjÞ

ð10Þ

with Ckl(t) containing both angular and radial fluctuations

and P2(x) = �(3x2 - 1) the second Legendre polynomial,

hlab
kl =rklðtjÞ the unit vector orientation/distance between

nuclei k and l at time tj, respectively, N the finite length of

the MD trajectory and c�1
1
¼ 1

N�i

PN�i
j¼1 r�6

kl ðtjÞ: It should be

noted that the choice of the normalization constant is

arbitrary and was set to correspond to the definition of the

order parameter (Eq. 5) for convenience.

For rapid internal motions, C decays rapidly to a plateau

value S2 with a characteristic internal correlation time. As

MD trajectories are of finite length, estimation of C(t) is

not precise for ti ? tN, since N - i ? 0, only few snap-

shots contribute to the average and ergodicity cannot be

assumed any longer due to the sampling problem.

For C(t) to converge, we require it to stay within a certain

range of a plateau value S2, without large fluctuations, for an

extended range of t. We define an error function e(t) =

|C(t) - S2| and aim at estimating the longest interval [ti;tj]

such that the mean ~eij ¼ heiij in this time interval and the

corresponding standard deviation rij do not exceed 0.05

respectively, as well as~ei0j0 B 0.05 and ri0j0 B 0.05 for all sub-

intervals [i0;j0] [ [i;j]2 with i, j = 1…N such that i0\ j0. If

2(i - j)[ N, i.e. if C is close to S2 for a consecutive time of at

least half of its domain definition, we consider C to have

converged.

Values of ~e and r can efficiently be computed using

dynamic programming and on-the-fly computation of

means and standard deviations in a single pass. However,

since we need to compute 0.5 N(N ? 1) values of ~e and in

our case N is in the range of 2.5 9 104, with C104 internal

correlation functions to be examined, we decided to divide

[1;N] into 102 non-overlapping stretches of equal size,

compute the averages of e on these intervals, and use the

102 averages instead of the 2.5 9 104 original values for

further analysis. This has the additional benefit of

smoothening the data, without changing the characteristic

course of a particular correlation function.

For human human ubiquitin, 56.6 % of the 5,449 cor-

relation functions Ckl converge, while 92.4 % of 489

individual protons considered have at least one correlation

function which converges; for human FYN tyrosine kinase

SH3 domain, 40.5 % of the 2,992 correlation functions

converge with 89.6 % of 345 individual protons having at

least one converging correlation function; for fibronectin

type III domain, 51.6 % correlation functions converge out

of 5295 and 93.5 % of 539 protons have at least one

converging correlation function; for murine adipocyte lipid

binding protein, 50.1 % of 7556 correlation functions

converge and 93.1 % of 796 individual protons have at

least one converging correlation function.

Determination of generic order parameters

Distance-dependent order parameters for all pairs of non-

exchanging protons with mutual distance less than 5 Å were

extracted from the trajectories of four globular proteins, as

described above. For the order parameter of proton pair (k, l)

Skl
2 , a matrix A with Akl = Skl

2 was constructed. By applying

a conjugant gradient algorithm in MATLAB� (2007a,

The MathWorks, Natick, MA), a vector x was determined

minimizing the l2-norm A� xTxk k: This vector holds the

S-factors Sk for all nuclei k, approximating S2
kl � Sk � Sl for

all pairs of nuclei (k, l), belonging to either the same residue

(‘‘intra-residue’’ dataset) or different residues (‘‘inter-resi-

due’’ dataset). Protons were classified as belonging to one of

9 different chemical groups, depending on the carbon they

are attached to: C-a, CH3, CH2-b, CH2-c, CH2-d, CH2-e,
CH2-proline, CH1, or aromatic. For each group, the S-factors

of the protons were averaged over all pairs in the group and

over four globular proteins to yield the generic S-factor for

this group. To restore generic order parameters, protons were

assigned generic S-factors according to their connectivity,

and two S-factors were multiplied to retrieve the generic

order parameter.

INPHARMA calculations

As described previously (Orts et al. 2009; Orts et al. 2008),

INPHARMA NOEs between the two exchanging ligands

for Protein Kinase A (PKA) are computed employing the

full relaxation matrix approach (Kalk and Berendsen 1976;

Keepers and James 1984; London 1999; Nilges et al. 1991)

to account for all possible pathways of spin diffusion, thus

allowing for rigorous, quantitative treatment of the NOE

transfer. The differential equation

dMðtÞ
dt
¼ �ðRþKÞ �MðtÞ ð11Þ

is solved for a given NOESY mixing time sM, yielding

M(t), the magnetization matrix at time t, as

MðsMÞ ¼ expð�ðRþKÞsMÞ �Mð0Þ ð12Þ

The kinetic matrix K represents the chemical exchange

according to the kinetic model TLA ? LB $ LA ? TLB

with T being the target protein and LA and LB being the

respective ligands. The relaxation matrix R contains the

auto-relaxation rates Rkk = qk and cross-relaxation rates

Rkl = rkl for all nuclei (k, l). The spectral density function

used has the form of the first term of Eq. (4), as described

in the Theory section.
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A more thorough theoretical treatment of INPHARMA

can be found elsewhere (Orts et al. 2009).

Equation (11) was solved using a matrix exponential

routine of the SciPY library in Python 2.4.3 for mixing

times 150, 300, 450, 600 and 750 ms, if not stated differ-

ently. Adjustable parameters were set to x = 800 MHz,

proton resonance frequency; sc = 17 ns, correlation time

of the protein; sL = 100 ps, correlation time of the free

ligands; kAB = 3,000 s-1 and kBA = 1,000 s-1 exchange

rates of the respective ligands according to the kinetic

model; LA = 450 lM and LB = 150 lM, respective

ligand concentrations, and 25 lM (for the NOESY exper-

iments with 450 and 750 ms mixing time) or 30 lM (else)

protein concentration, to recapitulate the experimental

setup. INPHARMA NOEs were normalized to the inten-

sities of the diagonal peaks of LA in a NOESY spectrum

at 150 ms mixing time. Normalized INPHARMA NOEs

computed for mixing times 300–750 ms were compared to

normalized experimental intensities obtained at the same

mixing times, and a simple linear regression was performed

to yield the Pearson correlation coefficient and the slope

a of the regression line y = ax.

Linear regression

Pearson correlation coefficients between samples x and

y and slopes of the best fit line y = ax were calculated as

R = cov(x,y)/rxry and a =
P

ixiyi/
P

ixi
2, respectively,

with r the sample standard deviation.
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